Tumor-triggered drug release from calcium carbonate-encapsulated gold nanostars for near-infrared photodynamic/photothermal combination antitumor therapy
نویسندگان
چکیده
Different stimulus including pH, light and temperature have been used for controlled drug release to prevent drug inactivation and minimize side-effects. Herein a novel nano-platform (GNS@CaCO3/ICG) consisting of calcium carbonate-encapsulated gold nanostars loaded with ICG was established to couple the photothermal properties of gold nanostars (GNSs) and the photodynamic properties of indocyanine green (ICG) in the photodynamic/photothermal combination therapy (PDT/PTT). In this study, the calcium carbonate worked not only a drug keeper to entrap ICG on the surface of GNSs in the form of a stable aggregate which was protected from blood clearance, but also as the a pH-responder to achieve highly effective tumor-triggered drug release locally. The application of GNS@CaCO3/ICG for in vitro and in vivo therapy achieved the combined antitumor effects upon the NIR irradiation, which was superior to the single PDT or PTT. Meanwhile, the distinct pH-triggered drug release performance of GNS@CaCO3/ICG implemented the tumor-targeted NIR fluorescence imaging. In addition, we monitored the bio-distribution and excretion pathway of GNS@CaCO3/ICG based on the NIR fluorescence from ICG and two-photon fluorescence and photoacoustic signal from GNSs, and the results proved that GNS@CaCO3/ICG had a great ability for tumor-specific and tumor-triggered drug release. We therefore conclude that the GNS@CaCO3/ICG holds great promise for clinical applications in anti-tumor therapy with tumor imaging or drug tracing.
منابع مشابه
Multifunctional gold nanostars for molecular imaging and cancer therapy
Plasmonics-active gold nanoparticles offer excellent potential in molecular imaging and cancer therapy. Among them, gold nanostars (AuNS) exhibit cross-platform flexibility as multimodal contrast agents for macroscopic X-ray computer tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), as well as nanoprobes for photoacoustic tomography (PAT), two-photon photolu...
متن کاملNear‐infrared light‐sensitive liposomes for enhanced plasmid DNA transfection
Near-infrared (NIR) light-responsive liposomes are attractive carriers for targeted and controlled drug delivery to the superficial organ or tissue (e.g., skin). This work describes the development of NIR-responsive liposomes by incorporating gold nanostars within liposomes composed of Phospholipon 90 g and cholesterol. Following cellular delivery, photothermal effect around the gold nanostar u...
متن کاملGold nanoparticle-induced sonosensitization enhances the antitumor activity of ultrasound in colon tumor-bearing mice
Introduction: Light-driven cancer therapy strategies (e.g. photodynamic therapy and photothermal therapy) have undergone remarkable progress in recent years, but they still suffer from a serious drawback of limited penetration depth of light in tissue. As a non-invasive and non- ionizing radiation, ultrasound can be focused remotely, transferring acoustic energy deep in the bo...
متن کاملMultifunctional near-infrared light-triggered biodegradable micelles for chemo- and photo-thermal combination therapy
A combination of chemo- and photo-thermal therapy (PTT) has provided a promising efficient approach for cancer therapy. To achieve the superior synergistic chemotherapeutic effect with PTT, the development of a simple theranostic nanoplatform that can provide both cancer imaging and a spatial-temporal synchronism of both therapeutic approaches are highly desired. Our previous study has demonstr...
متن کاملBiointerfacing polymeric microcapsules for in vivo near-infrared light-triggered drug release.
Seeking safe and effective water-soluble drug carriers is of great significance in nanomedicine. To achieve this goal, we present a novel drug delivery system based on biointerfacing hollow polymeric microcapsules for effectively encapsulating water-soluble antitumor drug and gold nanorod (GNR) functionalization for triggered release of therapeutic drugs on-demand using low power near-infrared ...
متن کامل